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Supplementary Methods

Outline of the FTSite algorithm

Step 1: Grid-based sampling of the protein surface using FFT. Protein structures are downloaded from

the Protein Data Bank1. All bound ligands including water molecules are removed prior to the calcula-

tions. FTSite uses 16 small molecule probe types (Supplementary Fig. 1) to sample the protein surface.

Grid-based Fast Fourier Transform (FFT) samples the protein exhaustively with 109 docked probe posi-

tions on the protein surface; this is discussed in greater detail afterwards. This algorithm requires only

the atomic coordinates of the probe and those of the protein structure; no a priori information about the

ligand binding site is required. The best 2,000 poses with the lowest energies for each probe type are

retained.

Step 2: Post-FFT clustering to discard spurious probe clusters. For each probe type, the 2,000 retained

poses are clustered using a simple greedy algorithm. Based on biophysical arguments we select the

lowest energy pose as the center of the first cluster, and add all poses within 4 Å center-to-center distance

from it as cluster members. All clustered poses are removed, and we repeat the same steps to form the

second and the subsequent clusters until all poses are clustered. Clusters with less than 10 probes are

removed, and the 6 largest clusters are retained for further analysis.

Step 3: Off-grid minimization and re-scoring. The energy of each retained protein-probe complex is

minimized using the CHARMM2 potential with the Analytic Continuum Electrostatic (ACE)3 model

representing the electrostatics and solvation terms as implemented in version 27 of CHARMM2. The

algorithm uses the polar-hydrogen-only parameter set from version 19 of CHARMM2. The energy

minimization is performed using a limited memory Broyden–Fletcher–Goldfarb–Shannon (L–BFGS)

method in which heavy atoms of the protein are held fixed, while the polar hydrogen atoms of the

protein and all atoms of the probes are free to move. Poses with positive energies after minimization are

discarded.

Step 4: Generating consensus clusters. Following the energy minimization we re-cluster the resulting

probe poses. As in step 2 we select the lowest energy pose as the center of the first cluster, but use 4 Å

full-atom pairwise RMSD as the clustering radius. After all probes are clustered and clusters with less
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than 10 members are discarded, the clusters are ranked on the basis of the Boltzmann averaged energy,

and the 6 lowest energy clusters are retained for every probe type. Consensus clusters are generated by

grouping probe clusters with clusters centers within 4 Å. The centers of the resulting consensus clusters

are fixed, and the probe clusters are re-distributed such that each cluster center is closer to the center

of its own consensus cluster than to the center of any other consensus cluster. Consensus clusters that

overlap with an integral element of the intact protein such as a co-factor are discarded. A consensus

cluster is considered to overlap with a co-factor if their volume overlap exceeds 80% of the consensus

cluster.

Step 5: Ranking consensus clusters. The algorithm ranks the consensus clusters by the number of non-

bonded contacts between the protein and all probes of the consensus cluster. A residue of the protein

and a probe are considered to be in contact if any atom of the residue is less than 4 Å from any atom

of the probe. A residue is considered to be in contact with a consensus cluster if it is in contact with

any of its probes. After selecting the contact residues for a consensus cluster we re-evaluate the number

of contacts by adding also interactions with probes that are within 4 Å but are not part of the original

consensus cluster. The resulting numbers are normalized using the overall number of contacts for all

probes, and used for ranking the consensus clusters.

Step 6: Identification of putative ligand binding sites. To identify the putative ligand binding site the

algorithm first selects the consensus cluster with the highest number of contacts. This cluster is then

expanded by adding any neighboring consensus cluster if the center of any of its probe is closer than 3.5

Å to the center of any probe in the consensus cluster. The protein residues that are within 4 Å of the

expanded consensus cluster constitute the top prediction of the binding site. The first consensus cluster

is then removed, and the procedure is repeated using the next consensus cluster with the highest number

of contacts to identify lower ranked predictions of the ligand binding site.

The Fast Fourier Transform (FFT) correlation approach to mapping

In Step 1 we perform exhaustive evaluation of an energy function in the discretized 6D space of mutual

orientations of the protein (receptor) and a small molecule probe (ligand). The center of mass of the

receptor is fixed at the origin of the coordinate system. The translational space is represented as a grid of

0.8 Å displacements of the ligand center of mass, and the rotational space is sampled using 500 rotations
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based on a deterministic layered Sukharev grid sequence which quasi-uniformly covers the space6.

The energy function describing the receptor-ligand interactions is defined on the grid and is expressed as

the sum of P correlation functions for all possible translations α, β, γ of the ligand at a given rotation:

E(α, β, γ) =
�

p

�

i,j,k

Rp(i, j, k)Lp(i+ α, j + β, k + γ)

where Rp(i, j, k) and Lp(i, j, k) are the components of the correlation function defined on the receptor

and the ligand, respectively. This expression can be efficiently calculated using P forward and one

inverse Fast Fourier transforms, denoted by FT and IFT , respectively:

E(α, β, γ) = IFT (
P�

p

{FT
∗{Rp}FT{Lp}})(α, β, γ)

FT{F}(l,m, n) =
�

i,j,k

F (i, j, k)exp−2πi(li/N1+mj/N2+nk/N3)

IFT{f}(i, j, k) = C

�

l,m,n

f(l,m, n)exp2πi(li/N1+mj/N2+nk/N3)

where i =
√
−1, N1, N2, and N3 are the dimensions of the grid along the three coordinates, and

C = 1/(N1N2N3). If N1 = N2 = N3 = N , the efficiency of this approach is O(N3 log(N3)) as

compared to O(N6) when all evaluations are performed directly.

For each rotation of the ligand we generate the FT (Lp) function on the grid and then calculate the sum

of the correlation functions using the formula above, resulting in scoring function values for all possible

translations. Since the function may have multiple minima, we retain the four lowest energy regions of

the translational space for each rotation. To derive the first region we select the lowest energy solution,

remove the surrounding volume of the 27Å3 cube, and repeat this step three more times. Finally, results

from different rotations are collected and sorted.

3



Energy function in the FFT based grid docking step

The energy expression in Step 1 includes the simplified van der Waals energy Evdw with attractive

(Eattr) and repulsive (Erep) contributions, the electrostatic interaction energy Eelec, an enclosure term

Eencl describing the contributions from hydrophobic enclosures, and the statistical knowledge-based

pairwise potential Epair representing other solvation effects:

E = Evdw + w2Eelec + w3Eencl + w4Epair

Evdw = Eattr + w1Erep

Eelec =
Nl�

i=1

qiφrPB

Epair =
NR�

i=1

NL�

j=1

εij

where NR and NL denote the numbers of atoms in the receptor and the ligand, respectively. The co-

efficients w1=11.1, w2=44.4, w3=0.88, and w4=3.33 weight the different contributions to the scoring

function based on calorimetric considerations and in agreement with the parameters used in the FTMap

algorithm7.

Van der Waals energy. We use stepwise functions to represent the attractive and repulsive steric terms.

The repulsive interactions are cut off at the van der Waals radius rvdw plus 1.8 Å because we want

the penalty function to be tolerant enough and to allow for differences between bound and unbound

structures. The attractive part is truncated at 6 Å. On the grid, the functions describing the receptor and

the ligand can be represented as follows.

Rp(l,m, n) = −cl,m,n + w1rl,m,n

Lp(l,m, n) =






1 if (l,m, n) � (aj ∈ J)

0 otherwise

where cl,m,n is the number of atoms that are at the distance d < r < D from the grid point (l,m, n),

rl,m,n is the number of atoms that are at the distance r < d from the same grid point, and (l,m, n) �

(aj ∈ J) means that the grid point (l,m, n) overlaps with atom aj of atom type J . As mentioned, D = 6

Å and d = rvdw + 1.8 Å. Thus, the correlation of Rp and Lp provides a shape complementarity term

representing both repulsive and attractive interactions, the former for the distances r < d, and the latter
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in the range d < r < D.

Electrostatic interactions. We approximate the electrostatic energy as the interaction energy between the

electrostatic potential φrPB of the solvated protein and the atomic charges qi of the probe. Thus, the

influence of the probe on the electrostatic potential of the protein-solvent system is neglected, assuming

that the probe is small and not strongly charged. Using a dielectric continuum model with low ion

concentration (corresponding to 0.1 mol salt concentration), the electrostatic potential of the solvated

protein is calculated by solving the linearized Poisson-Boltzmann equation

∇[�(−→r )∇φrPB(−→r )]− κ
2(−→r )φrPB(−→r ) = −4πρ(−→r ),

where �(−→r ), κ(−→r ), and ρ(−→r ) are the dielectric constant, the modified Debye-Hückel screening factor,

and the fixed charge density of the protein, respectively. The dielectric boundary between the low di-

electric protein region and the external bulk solvent is placed to account for the reduced water mobility

and hence reduced polarization in binding site cavities. This is achieved by dividing atoms of the protein

into ”cavity” and ”non-cavity” sets. Atoms are considered ”cavity” if they are not accessible to a large

spherical probe of 5.75 Å radius. The size of the probe is selected to represent the typical dimensions of

protein active sites. Each cavity atom is assigned a dielectric radius equal to its van der Waals radius plus

1.4 Å. In contrast, each non-cavity atom has a small fixed dielectric radius of 0.1 Å. These radii define a

continuous surface that separates the low dielectric protein and its extension into the cavities (� = 4.0)

from the bulk solvent (� = 80.0). We use the Poisson-Boltzmann module PBEQ (Beglov and Roux,

unpublished) of CHARMM2 to calculate the potential φrPB . The electrostatic energy is then expressed

as the vector product of the functions

Rp(l,m, n) = φrPB(l,m, n)

Lp(l,m, n) =






qj if (l,m, n) � (aj ∈ J)

0 otherwise

defined on the receptor and on the ligand grids, respectively. The potential is truncated at 15.0 kcal/mol.

Pairwise statistical potential. The general form of a pairwise contact potential is

Epair =
NR�

i=1

NL�

j=1

εij
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For a pair of atoms ai and aj of types I and J , respectively, εij = εIJ , where εIJ is the contact energy

between atoms of types I and J , if d < rij < D; otherwise εij = 0. We use the DARS (Decoys As

the Reference State) potential that originally has been developed for protein-protein docking 5, and has

been extended to describe the interactions between proteins and the molecular probes considered here.

The DARS parameters used in this work are listed below. In order to evaluate the energy function using

Fast Fourier Transforms, it must be written as a sum of correlation functions. Based on the eigenvalue-

eigenvector decomposition of the matrix of pairwise interaction coefficients εIJ , these coefficients can

be written as

εIJ =
K�

p=1

λpupIupJ

where λp is the pth eigenvalue of the interaction matrix, and upI is the Ith component of the pth eigen-

vector. Each term in the eigenvalue - eigenvector decomposition represents an energy contribution pro-

portional to the absolute value of the eigenvalue λp, and such contributions are independent due to the

orthogonality of the eigenvectors. We have shown that restricting consideration to the first four terms

yields around 10% error in the energy values, comparable to the error of representing the energies on a

grid5. The energy term with the pth eigenvalue of the pairwise potential is defined by the correlation of

the functions

Rp(l,m, n) =
Nr�

i=1

upIδi

Lp(l,m, n) =






upJ if (l,m, n) � (aj ∈ J)

0 otherwise

where δi is 1 if atom i of the receptor is closer than 6 Å to the grid point (l,m, n).

Enclosure term. Nonpolar enclosures disrupt water structure and create a favorable environment for

ligand binding8. To represent this effect we place a Gaussian ball, with σ = 10 Å, at each grid point, and

calculate its correlation with the Cα atoms of nonpolar residues. For each point in space, this function

measures the fraction of the ball occupied by the nonpolar regions of the protein:

Rp(l,m, n) =
NR�

i=1

1

σ
√
2π

exp(
−r2i,(lmn)

σ2
)

Lp(l,m, n) =






1 if (l,m, n) � AL

0 otherwise
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where NR is the number of atoms in the receptor, ri,(lmn) is the distance from atom i to grid point (l,m,n),

and AL is an atom of the ligand probe. The correlation of Rp and Lp is large in nonpolar cavities, and

it is small on protrusions and flat surfaces. This way the function, added to the energy expression with a

negative sign, improves the sampling of the cavity regions.

Selection of the probe library

For all mapping calculations in this paper we used the 16 probe molecules shown in Supplementary

Figure 1, which were inspired by original soaking experiments. These probes were selected to provide

some diversity in shape and polarity. Most probes consist of a hydrophobic moiety and one or two polar

groups (amine, amide, alcohol, ketone, urea, and ester), but we also included hydrophobic and aromatic

compounds. Each group is represented with one or more simple members. Alcohols are particularly

informative, since the OH group can act both as hydrogen bond donor and acceptor. All the probe

parameters apart from DARS potential which is discussed later, including radii and charges were derived

using version 19 of the CHARMM2 potential.

DARS (Decoys As the Reference State) parameters for mapping

The DARS (Decoys As the Reference State) pairwise interaction potential was originally developed for

protein-protein docking4. The novelty of the DARS approach is that we generate a large decoy set of

docked conformations to be used as the reference state. To create the potential, we compare the frequency

of contacts between two specific atom types in the native state to the frequency of contacts in the decoys.

Supplementary Table 1 lists the DARS contact energies between each of the 18 atom types for proteins

and each of the 67 heavy atom types of the 16 probes.
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Test sets and success criteria

FTSite was evaluated on unbound structures from two test sets of proteins. The QSiteFinder set9 consists

of both unbound and bound structures for 35 proteins. The LIGSITECSC set10 includes the same struc-

tures, plus unbound and bound pairs for 13 additional proteins that have been selected for assessing the

binding site identification method called PASS11. A number of methods have been tested using the two

sets, for each set with somewhat different success criteria. Here we adopt the same criteria, since this

will allow for comparing the performance of FTSite to that of other methods. For the QSiteFinder set9,

the binding site is considered correctly predicted if at least 25% of the probes identifying the putative

ligand binding site are within 1.6 Å of any ligand atom. This ensures that the site is reasonably sized, as

substantially expanding the predicted site one could move too far from the ligand. For the LIGSITECSC

set10 the criterion requires the geometric center of the predicted ligand binding site to be within 4.0 Å

of any ligand atom. In addition to these criteria, this study introduces two additional quality measures,

site coverage (SC) and ligand coverage (LC), defined as SC=(VL ∩ VS)/VS and LC=(VL ∩ VS)/VL,

respectively, where VL and VS denote the volume of the ligand and that of the predicted site, and ∩

indicates the intersection of two volumes. The quality measure SC is in fact analogous to the success

criteria used for the QSiteFinder set9, which thus requires an SC value exceeding 25%.

8



Supplementary results

Supplementary Table 2 compares the performance of FTSite, QSiteFinder9, and the method of Morita et

al.12 by providing site coverage for all bound/unbound protein pairs from the QSiteFinder set9 (success-

ful predictions only). Supplementary Figure 2 shows top ranked predictions of binding sites identified

by FTSite in the unbound structures of the QSiteFinder set9. The SC values for QSiteFinder9 and for the

method of Morita et al.12 are from the publication by Morita el al.12 Supplementary Table 3 shows the

distances from the geometric center of each putative ligand-binding site to the closest atom of the ligand

(successful predictions only) for all bound/unbound protein pairs of the LIGSITECSC set10, as well as

the site coverage (SC) and ligand coverage (LC) values.

There are obvious limitations to each of the criteria used by QSiteFinder9 and LIGSITECSC 10. In

particular the bound ligands in the test sets may not be representative of all ligands because it is derived

only from one bound structure. If the selected ligand is small, there can only be limited intersection

of the putative ligand binding site with the ligand, which can result in a low SC value in spite of the

correctly identified ligand binding site. On the other hand, if the ligand is much larger in volume than the

predicted ligand binding site, then requiring an SC value of at least 25% may be too lenient. In particular,

the QSiteFinder9 criterion would be relatively easy to satisfy for a small binding site accommodating

only a fraction of a large ligand, although the prediction could be very inaccurate. Thus, adding ligand

coverage (LC) as the second quality measure is very important if the predicted site overlaps only with

a fraction of the ligand. On the other hand, the LIGSITECSC 10 criterion may be more restrictive but

in some cases unphysical. If the ligand binding site is elongated and the ligand lies at one of its end,

then the centers of geometry of the ligand and of the ligand binding site would necessarily be far apart,

resulting in an apparently unsuccessful prediction.
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Supplementary Discussion 
 
Binding site identification methods used for comparison 
 
A large number of ligand binding site identification methods have been published, which can generally 

be classified into geometry based and energy based methods, and may also involve the use of 

evolutionary information9 - 25.  The performance of FTSite has been compared to the performance of 

methods that have been evaluated either on the QSiteFinder9 or the LIGSITECSC 10 test sets, in each case 

resulting in a ranked list of predicted binding sites.  Some of these methods are geometry based 

including SURFNET13, POCKET14, LIGSITE15, LIGSITECS 10, CAST16, PASS11, FPocket20, 

PocketPicker22, DoGSite23, and VICE24. The energy based methods used for comparison include 

QSiteFinder9 and a similar method published by Morita et al12. The STP method25 uses residue triplet 

propensities extracted from protein structures, and since the approach is reminiscent of extracting a 

structure-based statistical potential, it can also be considered an energy based method. Finally, 

LIGSITECSC 10 is an improved implementation of LIGSITECS 10 where the authors used evolutionary 

information to improve their success rates in identifying ligand binding sites10. Therefore LIGSITECSC 10 

represents a combination of geometry based and evolutionary methods. 

 

It is instructive to discuss some of the inherent limitations of the above methods, as the discussion may 

explain some sources of the improved predictive power by FTSite. A number of the methods are grid-

based and are sensitive to grid-spacing or resolution, and in particular to the orientation of the protein in 

relation to the grid axes. Although the first step of FTSite is also grid-based, the method includes an 

off-grid minimization step that eliminates any noticeable dependence on grid placement. In some of the 

geometry-based methods it is challenging to accurately delineate free space from the ligand binding 

site. A number of methods use probe spheres to flood the protein surface and the clustering of the 

spheres to identify protein cavities and putative ligand binding sites. These methods typically struggle 

with identifying wide cavities unless spheres of greater radii are used. The natural drawback to the use 

of greater spheres is the “overflow” of spheres into neighboring cavities resulting in co-joined putative 

ligand binding sites that are imprecise. A number of methods require the computation of alpha shapes 

and the use of “discrete-flow” method to join neighboring cavities. These methods require the opening 

of a cavity to be smaller in circumference than any cross-section of the space, which holds for some 

ligand binding sites but not for others. An additional drawback is their tendency to join cavities buried 

inside the protein, thereby identifying continuous channels instead of a well-defined ligand binding site.  

 

Several methods use training sets of proteins to build a classifier (shape descriptors, volumes etc.) for 

distinguishing ligand binding sites from unremarkable protein cavities. These classifiers tend to be 
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retrospective in nature, and hold limited information on the biophysical basis of protein-ligand 

interactions. These methods encounter significant challenges when applied on unbound proteins where 

the ligand binding sites are less well formed than in the bound forms of the proteins, or if there are 

significant conformational changes upon ligand binding. LIGSITECSC 10 uses evolutionary based 

information on the re-ranking of putative ligand binding sites. The successful implementation of this 

method is contingent upon the quality of multiple sequence alignment tools, and the availability of 

sequences. FTSite circumvents many of these challenges by the direct biophysical modeling of protein-

ligand interactions using molecular mechanics force fields. The consideration of protein geometry and 

physicochemical properties of a putative ligand binding site is implicit in the modeling.  

 

Discussion of specific cases 
 
The following is a selection of cases demonstrating the strengths and the occasional shortcomings of 

FTSite in the context of the two test sets used. First, cases in which FTSite has performed well and 

identified the entire ligand binding site correctly are discussed, followed by cases in which two of the 

top ranked predictions were needed to cover the entire site. Quality is assessed in terms of site coverage 

(SC) and ligand coverage (LC) values. Next we describe cases in which other energy based methods 

had difficulties (i.e., the ligand binding site was not among the 3 top ranked predictions), but FTSite 

worked well. Finally we discuss the few cases in which FTSite was unable to identify the correct ligand 

binding site as the top ranked prediction. 

 

High-quality identification of binding sites. Supplementary Figure 3 shows four cases in which the top 

ranked prediction of the binding site agrees well with the ligand position in the bound form of the 

protein. In all these cases the ligand occupies almost the entire space predicted as the binding site, 

resulting in site coverage (SC) and ligand coverage (LC) values well above 90%. It is clear that in these 

proteins the binding site is well formed even in the unbound structure, and there are only mild 

conformational changes upon ligand binding. Therefore FTSite had no difficulty in locating the sites 

with high accuracy. 

 

Partial identification of binding sites. Supplementary Figure 4 shows four cases in which the top ranked 

prediction overlaps only with some part of the ligand. These results are unsurprising given that the 

ligands span a large volume (Supplementary Fig. 4A and 4B), or extend in tangential directions out of 

the pocket (Supplementary Fig. 4C). In these cases, consensus clusters are located on the two distal 

ends of the ligands, and are not joined into a single consensus cluster. As the result, we need the two 

top ranked predictions of the binding site to trace out the ligand in its entirety. These cases are 

interesting as they demonstrate the concept in which a ligand binding site is identified by a collection of 
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consensus clusters, representing distinct hot spots. The amino acid residues in each hot spot contribute 

disproportionately to the binding free energy. Figure 4D demonstrates extension of the distal end of the 

ligand into the second putative ligand binding site; this hints at the feasibility of extending the ligand to 

interact with the second site, providing potentially important information for drug design.  

 

FTSite outperforms other methods. There are a number of cases in which FTSite was able to identify 

the ligand binding site using the top ranked prediction, but other methods had challenges. In the cases 

selected (Supplementary Fig. 5A, 5B, and 5C) QSiteFinder9 was unable to correctly identify the ligand 

binding site using the 3 top ranked predictions. QSiteFinder9 found the putative ligand binding site for 

beta-amylase (Supplementary Fig. 5A) using the 4th predicted site, and for HIV-2 protease 

(Supplementary Fig. 5B) using the 7th predicted site. In the case of acetylcholinesterase (Supplementary 

Fig. 5C), the predicted ligand binding site has lower than 25% volume overlap with the ligand, and 

hence is not a considered a successful prediction. In the case of beta-amylase, the loop formed by the 

residues V99, G100, and D101 significantly changes conformation, and closes down on the ligand in 

the bound form of the protein, resulting in a better defined ligand binding site. Similarly, in the 

unbound form of HIV-2 protease the ligand binding site is very open, and becomes well formed only 

upon ligand binding.  Under these circumstances the interactions between the protein and the methyl 

probes used by QSiteFinder9 are diminished, which results in a lack of probe clusters and poor ligand 

binding site prediction. In contrast, FTSite samples the protein surface using small molecular probes 

that vary in size, shape, and polarity. Such probes extensively interact with the protein surface even 

when the hydrophobic spheres used by QSiteFinder do not, providing improved robustness of FTSite to 

conformational changes. The method developed by Morita et al.12, which is very similar to 

QSiteFinder9, was unable to identify the ligand binding sites for beta-amylase (Supplementary Fig. 5A) 

and HIV-2 protease (Supplementary Fig. 5B) using any of its predictions. For trypsinogen 

(Supplementary Fig. 5D), Morita et al12 found the correct ligand binding site using the 6th predicted site. 

In all cases discussed here, the unbound and bound forms of the protein substantially differ in the 

region of the binding site, which makes finding the site based on the unbound structure more difficult. 

 

FTSite negative results. In the two test sets, FTSite was unable to correctly identify the ligand binding 

sites using the top ranked prediction only for three proteins. These are 1A6U (unbound antibody Fv 

fragment), 1GCG (unbound glucose/galactose receptor), and 1ULA (unbound purine nucleoside 

phosphorylase). In the first case (Supplementary Fig. 6A), FTSite was unable to find the correct ligand 

binding site using all 3 top ranked sites. This is perhaps unsurprising, given that only the Fv fragment is 

mapped without the Fc domains of the light and heavy chains. The absence of these domains could 

result in the misidentifications of the domain-domain interface as potential ligand binding site. As for 

1GCG (glucose/galactose receptor; Supplementary Fig. 6B) and 1ULA (purine nucleoside 

phosphorylase; Supplementary Fig. 6C), the ligands are in tight and enclosed binding sites in the bound 
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forms of the proteins. Tight and enclosed ligand binding sites present a challenge to the mapping when 

placing the probes because of repulsive interactions. In spite of these challenges, FTSite was able to 

identify the correct ligand binding site using the 2nd predicted site for both these proteins. Perhaps more 

interestingly, for both proteins the top ranked predictions are very close to the entrance of the ligand 

binding sites. The clustering of small molecular probes in these regions suggests that the amino acid 

residues involved are likely to be responsible for recruiting a ligand to the binding site. We have 

reported similar results for some haloalkane dehalogenases that have a small active site deeply buried in 

the protein, and an intermediate binding site on the surface26, 27. 

 

The FTSite server 
 

FTSite is available as a server at http://ftsite.bu.edu. Supplementary Figure 7A shows the interface for 

submitting a protein to the server. The user has the option of submitting a protein from the Protein Data 

Bank by specifying the PDB ID and the chain ID, or uploading a PDB file to the server. The server 

automatically discards all HETATM records from the PDB file, thereby removing all ligands including 

water molecules prior to the calculations. The user has the option of retaining metal ions, by prepending 

the letter “h” to the ion name, and specifying this as an additional chain during submission. For 

instance, to include a zinc ion, the user would specify an additional PDB chain “hzn” after the Chain ID 

of the protein. As shown in Supplementary Figure 7A, the user has decided to submit for analysis chain 

A of the tyrosine protein kinase crystal structure (PDB ID 3lck).  Upon successful submission, the user 

should see “Success” as shown in Supplementary Figure 7B. 

 

After the analysis is completed, the server sends an email to the user with a PyMol session and also a 

link to a web interface for viewing the results. The PyMol session contains the submitted protein 

structure with the ligand binding sites, and residues contacting each ligand binding site. As shown in 

Supplementary Figure 8, the web interface uses a Java Applet which is a modified version of 

OpenAstexViewer28. The mesh representation of the sites and the sticks representation of the residues 

contacting the sites can be turned on and off along with other graphical representations of the protein.  

Right-clicking on the viewer opens a menu for saving images. The residues contacting each ligand 

binding site are also listed. 
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Supplementary Figure 1.  Small molecules used as probes by FTSite to identify ligand binding sites. The 
probes are selected to include a range of chemical moieties such as hydrophobic molecules coupled with 
polar functional groups and aromatic compounds. Prior studies have shown this selection to be capable of 
providing good characterization of ligand binding sub-sites, which contribute to a disproportionate amount 
of binding free energy on the protein surface. 
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Supplementary Figure 2. Top ranked predictions of binding sites (shown in mesh representation), 
identified by FTSite in the unbound structures of the QSiteFinder test set. Ligands from the bound 
structures are superimposed for reference, and are shown in sticks representation. The corresponding 
unbound and bound structures for each panel can be referenced using Supplementary Table 2 (e.g. ‘1a’ 
refers to unbound structure PDB ID: 7RAT, and the bound structure PDB ID: 6RSA). 
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Supplementary Figure 3. The top ranked FTSite prediction of the ligand binding site, based on the 
unbound protein structure, has excellent coverage of the ligand (shown in sticks representation) from the 
bound form of the protein. The examples are listed in the following format: protein name followed by (in 
parenthesis) the PDB ID of the unbound structure and the PDB ID of the bound protein structure. (a) 
Streptavidin (2RTA and 1STP); (b) elastase (1ESA and 1INC); (c) protease (1NPC and 1HYT); and (d) 
Ribonuclease A (8RAT and 1ROB). 
 
a                 b 

  
c                  d 
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Supplementary Figure 4. Cases in which the ligands are large and/or are branched. In the following 
examples FTSite required the two top ranked predictions of the binding site to cover the entire ligand 
(shown in sticks representation). The Rank 1 prediction is colored in salmon, and the Rank 2 in green. As 
in the previous figure, the examples are listed in the following format: protein name followed by (in 
parenthesis) the PDB ID of the unbound structure and the PDB ID of the bound protein structure. (a) Renin 
(1BBS and 1RNE); (b) pepsin (1PSN and 1PSO) (c) carboxypeptidase (5CPA and 6CPA); and  (d) 
thermolysin  (1L3F  and 2TMN).  
 
a                  b 

  
c      d 
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Supplementary Figure 5.  Cases in which FTSite succeeded in finding the ligand binding sites using the 
top ranked ligand binding site but other methods had challenges. These cases typically demonstrate 
conformational changes in which the ligand binding site is well formed only in the ligand-bound structure 
of the protein. The ligands are shown in sticks representation. The first putative ligand-binding site is 
colored in salmon, and the second is in green. As in the previous figures, the examples are listed in the 
following format: protein name followed by (in parenthesis) the PDB ID of the unbound structure and the 
PDB ID of the bound protein structure. (a) Beta-amylase (1BYA and 1BYB); (b) HIV-2 protease (1HSI 
and 1IDA); (c) acetylcholinesterase  (1QIF and 1ACJ); and (d) trypsinogen (2TGA and 1MTW). 
 
a                  b 

  
c                  d 
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Supplementary Figure 6. Cases in which FTSite was unable to identify the ligand binding site using only 
the top ranked prediction. The ligands are shown in sticks representation. The first predicted site is colored 
in salmon, second is in green, and the third is in purple. As in the previous figures, the examples are listed 
in the following format: protein name followed by (in parenthesis) the PDB ID of the unbound structure 
and the PDB ID of the bound protein structure. (a) Antibody Fv fragment (1A6U and 1A6W); (b) 
glucose/galactose receptor (1GCG and 1GCA); and (c) purine nucleoside phosphorylase (1ULA and 
1ULB). 
 
a              b              c 
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Supplementary Figure 7. User interface for the FTSite server (a) PDB submission interface. The user can 
provide a job name, specify a PDB ID or upload a PDB file, provide the chain ID, and the email address for 
notification when the analysis is done. (b) An example of a successful submission. 
 
                                     a 

 
 
                                    b 
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Supplementary Figure 8 – Online interface for the user to view the results after the analysis is done. The 
interface uses a Java applet based on OpenAstexViewer.24 The user has the option of generating various 
graphical representations of the protein, the putative ligand binding sites, and amino acid residues in 
contact with the respective sites. The user has the option of downloading a PyMol session as well. 
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Supplementary Table 1 – Contact energies for atoms from the protein and atoms from the 16 small 
molecule probes used by FTSite 
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Supplementary Table 2. Comparing the performances of FTSite to those of QSiteFinder9 and the method 
of Morita et al.12 on the QSiteFinder test set using site coverage (SC) as the success criterion. The column 
“Rank” indicates the rank of the prediction that overlaps with the ligand from the bound form of the 
protein. The first column corresponds to panels in Supplementary Figure 2 in which top predictions of 
binding sites by FTSite are displayed. 
 

QsiteFinder Dataset 
      FTSite QsiteFinder Morita et al. 

Suppl Fig. 2 
Grid Unbound Bound Rank SC (%) Rank SC (%) Rank SC (%) 

1a 7rat 6rsa 1 93 1 70 1 90 
1b 6ins 3mth 1 56 0 0 2 85 
1c 5cpa 6cpa 1 93 3 72 3 90 
1d 4ca2 1okm 1 79 3 100 1 52 
1e 3p2p 5p2p 1 91 1 88 1 83 
2a 3lck 1qpe 1 92 3 55 1 62 
2b 3app 1apu 1 98 4 6 0 0 
2c 2tga 1mtw 1 96 2 44 6 100 
2d 2sil 2sim 1 98 2 59 3 52 
2e 2rta 1stp 1 97 1 89 1 100 
3a 2ptn 3ptb 1 59 1 89 1 96 
3b 2ctb 2ctc 1 30 1 57 4 92 
3c 2cba 2h4n 1 65 1 90 1 73 
3d 1ypi 2ypi 1 60 2 35 1 47 
3e 1stn 1snc 1 70 1 19 1 33 
4a 1qif 1acj 1 61 1 21 1 65 
4b 1pts 1srf 1 95 1 83 1 96 
4c 1psn 1pso 1 94 1 74 1 97 
4d 1phc 1phd 1 93 1 78 1 87 
4e 1pdy 1pdz 1 51 3 66 1 49 
5a 1nna 1ivd 1 93 2 87 1 88 
5b 1l3f 2tmn 1 97 1 67 1 87 
5c 1krn 2pk4 1 100 1 85 1 100 
5d 1ime 1imb 1 76 1 57 1 40 
5e 1ifb 1icn 1 71 1 54 1 57 
6a 1hsi 1ida 1 100 7 6 0 0 
6b 1djb 1blh 1 79 2 73 1 47 
6c 1chg 3gch 1 91 2 78 2 1 
6d 1cge 1hfc 1 74 1 77 1 89 
6e 1bya 1byb 1 85 4 56 0 0 
7a 1brq 1rbp 1 86 1 61 1 61 
7b 1bbs 1rne 1 99 1 88 1 94 
7c 1ahc 1mrg 1 59 1 41 1 57 
7d 1a6u 1a6w 0 0 1 94 1 99 
7e 1a4j 1igj 1 92 1 49 1 45 
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Supplementary Table 3. Prediction of ligand binding site for the proteins in the LIGSITECSC test set. 
Column 3 shows the rank of the predicted ligand binding site overlapping with the ligand from the bound 
form of the protein. The distances from the center of geometry of the predicted ligand binding site to the 
closest ligand atom are shown in Column 4. Site coverage (SC) and ligand coverage (LC) values are also 
listed.  Note that in majority of the cases FTSite provides high-quality predictions, overlapping large 
fractions of the ligand. 
 

LIGSITECSC set 
     Coverage 

Unbound Bound Rank Distance SC (%) LC (%) 
7rat 6rsa 1 1.2 93 90 
6ins 3mth 1 0.7 56 100 
5cpa 7cpa 1 0.9 99 63 
4ca2 1okm 1 1.4 79 89 
3p2p 5p2p 1 1.7 91 89 
3lck 1qpe 1 1.2 92 83 
3app 1apu 1 0.5 98 58 
2tga 1mtw 1 1.3 96 73 
2sil 2sim 1 1.2 98 100 
2ctb 2ctc 1 3.5 30 50 
2cba 2h4n 1 1.3 65 100 
1ypi 2ypi 1 2.9 60 100 
1stn 1snc 1 2.2 70 44 
1qif 1acj 1 1.2 61 93 
1pts 1srf 1 0.4 95 100 
1psn 1pso 1 2.0 94 69 
1phc 1phd 1 0.6 93 100 
1pdy 1pdz 1 2.7 51 100 
1nna 1ivd 1 0.9 93 100 
1l3f 2tmn 1 0.5 97 83 
1krn 2pk4 1 0.6 100 100 
1ime 1imb 1 1.3 76 100 
1ifb 2ifb 1 2.1 69 100 
1hsi 1ida 1 1.1 100 75 
1djb 1blh 1 1.3 79 100 
1chg 3gch 1 1.4 91 100 
1cge 1hfc 1 1.0 74 76 
1bya 1byb 1 1.0 85 53 
1brq 1rbp 1 0.7 86 81 
1bbs 1rne 1 0.8 99 80 
1ahc 1mrg 1 1.7 59 100 
1a6u 1a6w - - - - 
1a4j 1igj 1 0.6 92 65 
8rat 1rob 1 1.1 93 95 
8adh 1cdo 1 2.1 65 41 
5dfr 4dfr 1 1.8 67 64 
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3tms 1bid 1 3.9 25 30 
3ptn 3ptb 1 1.8 61 100 
3phv 4phv 1 0.7 100 28 
2fbp 1fbp 1 0.7 99 88 
2ctv 5cna 1 0.7 100 100 
1ula 1ulb 2 2.7 48 100 
1swb 1stp 1 0.8 93 100 
1npc 1hyt 1 1.3 90 100 
1hxf 1dwd 1 0.8 99 84 
1hel 1hew 1 0.7 80 72 
1gcg 1gca 2 0.7 100 100 
1esa 1inc 1 1.0 91 100 
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